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Quantum transitions in Lennard-Jones clusters
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The ground states of Lennard-Jones (LJ) clusters are estimated by finding the Gaussian wave packets that
minimize the energy functional. A “phase diagram” for LJ, as a function of size (n=31,...,45) and de Boer
quantum delocalization length (A €[0;0.3]) is constructed, showing the stability ranges for the two competing
structural motifs, the Mackay and anti-Mackay icosahedra. An increase of A has an effect similar to heating

and as such may induce structural transformations.
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Quantum effects play an important role in the dynamics
and thermodynamics of many-body systems that include suf-
ficiently light particles. However, due to the computational
difficulties, the majority of studies of complex systems, e.g.,
Van der Waals clusters, are restricted to purely classical mod-
els. Therefore, understanding and quantification of quantum
effects remains a big challenge in the fields of molecular
dynamics and statistical mechanics simulations.

In the present study, we consider the commonly used
model that represents a Van der Waals cluster by n particles
interacting with each other via the Lennard-Jones (LJ) pair
potential,

U(”ij)=4€[(U'/”ij)12—(0'/rij)6]- (1)

After using the reduced units for temperature (kgT/e€),
distance (r/ o), and energy (E/€), a quantum monatomic LJ
system is characterized by a single parameter, e.g., the de
Boer quantum delocalization length A=(%/\me)/ o, which
effectively measures the quantum delocalization of the wave
functions relative to the system scale defined by o. For most
other pair potentials (e.g., the Morse potential), in addition to
the quantum parameter, one has to specify at least one other
parameter. This makes the LJ system a good choice for sys-
tematic studies of quantum effects, while minimizing the nu-
merical work.

The thermodynamics of LJ clusters is both very complex
and numerically challenging even without taking into ac-
count the quantum effects (see, e.g., Refs. [1-5]), while in-
cluding the quantum effects increases both the algorithmic
complexity and computational cost by orders of magnitude.
Some recent examples are Refs. [6-9].

The two dominant structural types that are realized in the
classical limit (A=0) for global energy minima of all clusters
(except some special cases, such as LJsg) are based on either
the Mackay icosahedral or anti-Mackay (or polyicosahedral)
motifs, which correspond, respectively, to an incomplete
Mackay or anti-Mackay overlayer surrounding a Mackay
icosahedral core [10—13]. The atoms in an anti-Mackay over-
layer are more loosely packed than in a Mackay overlayer
and as such have more liquidlike character. (Note, however,
that in some cases an anti-Mackay structure could also be
characterized as solidlike as it may still be highly symmet-
ric.) For n=31,...,55, the Mackay packing is energetically
more favorable than the anti-Mackay one. However, heating
of a cluster with the Mackay global minimum may induce a
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transition to an anti-Mackay structure, because the latter is
entropically more favorable than the former [3,5]. For the
special case of LJsg, which has an octahedral global mini-
mum, the “solid-solid” thermally induced transition takes
place [1,2] due to the fact that the octahedral structure is
entropically less favorable than the Mackay structures. Fur-
ther heating of the cluster would result in the Mackay
— anti-Mackay (M — aM) transition similar to those that oc-
cur in the other clusters with the Mackay global minimum.
References [8,9] report results for Ne,, clusters, which show
that the quantum delocalization (A=0.095), just like heating,
can make the anti-Mackay packing energetically most favor-
able. In addition, Ref. [9] shows that none of the nonicosa-
hedral ground states survive for sizes up to n=147.

In the present study, we estimate the ground states (i.e.,
zero temperature) of the LJ, clusters with sizes n
=31,...,45 for the range of quantum parameter A €[0;0.3].
We note here that examples of such studies can be found in
the literature. In Ref. [14], Calvo et al. in particular used the
harmonic approximation (HA) to investigate the relative sta-
bilities of ground-state structures for LJ clusters for a set of
A values corresponding to xenon (A=0.01), argon (A
=0.03), and neon (A=0.095). They indicated that the anti-
Mackay structure may become more energetically favorable
than the Mackay one when A is sufficiently large. Later,
Doye and Calvo [15] used the HA to determine the ranges of
stability of competing structural motifs (namely, icosahedral,
decahedral, and fcc) as a function of size and quantum pa-
rameter for large “magic-number” clusters. While the HA
may be adequate for nearly classical cases, such as, e.g.,
xenon and argon, as shown in Ref. [8], and also in the
present work, in a more quantum regime, e.g., corresponding
to neon, the HA is not quite accurate. More recently, Der-
rickson and Bittner [16] applied a Bohmian hydrodynamic
approach to estimate the ground states of several small argon
and neon clusters. There is an indication, however, that the
latter method may even yield unphysical results [17].

Our method of choice for the estimation of cluster ground
states is based on the use of the variational Gaussian wave
packets (VGWs) [7-9]. A VGW gives the exact ground state
for a harmonic potential. While it is manifestly approximate
for a general anharmonic potential, the VGW method dem-
onstrated its practicality, specifically, for the case of Nesg
(see Ref. [8]), for which the VGW energies agreed very well
with those computed by the path-integral Monte Carlo
(PIMC) method.
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A VGW,

1
(rlgo; 7) =exp| - E(r—q)TG‘l(r—qH vl (2)

is an approximation to the solution of the imaginary-time
Schrédinger equation |gy; 7) =~ e~™|q,; 0) with the initial con-
dition ( r|go;0y=08(r—¢q,). The VGW is propagated in the
imaginary time 7 by solving a system of coupled ordinary
differential equations for the time-dependent parameters G
=G(7), g=q(7), and y=y(7) corresponding, respectively, to
the Gaussian width matrix (a 3nX3n real symmetric and
positive-definite matrix), the Gaussian center (a real 3n vec-
tor), and a real scale factor. In the zero-temperature limit
(7—), the VGW becomes stationary and minimizes the
energy functional

(q0: 1Hq0:7)
e 3
(q057lq0:7) G)

The VGW propagation in 7 is made efficient by fitting the
LJ potential by a sum of Gaussians,

P
U(ry) = > c, exp(-— apr[zj). (4)
p=1

In the present study, six Gaussians are used [18], which
provides a slightly more accurate approximation for the po-
tential than the three-Gaussian fit used in Refs. [7-9]. The
parameters of the present Gaussian fit are

p Cp ap

1 31279960.65933084 35.14249661727566
2 1668963.963961670 21.73050942017830
3 91092.34069670191 13.25329843520143
4 3354.805129558428 7.60982070333635
5 —8.46844309983970 1.67180258175699
6 —0.38418467585210 0.50261814095335

For a single-minimum potential, there is a single station-
ary VGW, while otherwise there may be multiple stationary
VGWs, typically (albeit not always, if the minima are not
deep enough [8]) one per minimum. The problem of finding
the best estimate for the ground state then becomes akin to a
global optimization. Here we adapt the procedure of Refs.
[8,9]. For each cluster size, n=31,...,45, long random
walks are generated by the replica-exchange Monte Carlo
method [19] using the corresponding classical system. Every
once in 10° MC steps, the replica configurations with tem-
peratures around the corresponding classical M — aM transi-
tion are quenched up to 7~100 (or 7~0.01 in reduced
units), resulting in a nearly stationary VGW. The quenching
is performed for the set of quantum parameters A
={0.095,0.19,0.30}. At the end of the simulation, the 20
different lowest-energy configurations for each of the above
three A values are retained, resulting in a set of 60 configu-
rations. Each of these 60 configurations g is then quenched
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FIG. 1. (Color online) Energies of selected stationary Gaussians,
E(A)=E(A) [relative to the ground state energy Eo(A)], of Llsg
cluster as a function of the de Boer quantum delocalization param-
eter A for the octahedral, Mackay, and anti-Mackay configurations.

on a fine grid of the quantum parameter A €[0;0.32] by
changing A incrementally and using the final value ¢(7) of
the quenched configuration as the starting point for the next
value of A.

As an example, Fig. 1 shows energies E;(A) [relative to
the ground state energy Ey(A)] as a function of A for the
LJsg cluster obtained by the procedure described above. In
the classical regime, the octahedral and the Mackay struc-
tures are very close in energies while the anti-Mackay struc-
tures have substantially higher energies. Figure 2 shows the
three energy curves, one for each of the three competing
structural motifs. In order to make the figure easier to read,
the energies are shown relative to the harmonic energy for
the octahedral minimum. The most interesting range of quan-
tum parameters corresponds to A €[0.086:0.09], where all
three structural types have similar energies. Figure 3 shows
the ground-state energy Ey(A) for this range (also relative to

-40 L | L | L | L | L |

FIG. 2. (Color online) The VGW energies E(A)—Eya(A) (after
subtraction of the HA for the octahedral configuration) for the same
configurations as in Fig. 4.
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FIG. 3. The ground-state energy Ey(A)—Epa(A) (after subtrac-
tion of its linear fit at A=0, i.e., the HA for the octahedral configu-
ration) and the Q¢ orientational bond-order parameter for the LJsg
cluster as a function of the de Boer parameter A. Each of the three
structures depicted in the figure is energetically favorable for a cer-
tain range of A.

the harmonic energy of the octahedral configuration), and
Q¢(A), the orientational bond-order parameter [20]. The lat-
ter is a convenient indicator of the structure. The three dif-
ferent structures are also depicted in the figure. The particu-
larly interesting result of this calculation is that the
octahedral configuration has the lowest energy for A
<0.0868, the Mackay structure is energetically most favor-
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FIG. 4. (Color online) The HA energies Ey as a function of the
quantum parameter A for the three competing configurations of the
LJsg cluster, having the octahedral, Mackay, and anti-Mackay
structures.
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FIG. 5. (Color online) Same as Fig. 1 but for the LJ3; cluster.

able only over the narrow range A €[0.0868;0.0895], while
the anti-Mackay structure has the lowest energy for A
>0.0895.

In the A—0 limit, the HA becomes exact and as such
coincides with the VGW result. However, the harmonic en-
ergies Ey, depend linearly on A as shown in Fig. 4 for the
three competing configurations of the LJ;5 cluster. The three
straight lines merge for A ~0.073, which is quite different
from the VGW result. Already for A ~0.03 (corresponding
to Arsg) the deviation of the VGW energies from straight
lines is noticeable (see Fig. 2).

Figure 5 shows the energy diagram for LJ5,. The quench-
ing analysis for this cluster resulted in only five different
configurations, corresponding to the Mackay global mini-
mum and four anti-Mackay local minima. The Mackay
— anti-Mackay transition occurs at A =0.012, i.e., at a much
lower value than that for LJsg. This is not surprising since
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FIG. 6. (Color online) The “phase diagram™ for LJ, clusters
displaying the ranges of stability of Mackay and anti-Mackay
ground-state structures. For each cluster size n, the point indicates
the value of the quantum parameter A at which the M— aM tran-
sition occurs. The vertical line for n=38 indicates the stability range
of the octahedral ground state.
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LJ;, is the smallest two-layer cluster with a Mackay global
minimum, the anti-Mackay local minimum being very close
in energy to the latter. Also note that when A is increased
further, the ground state switches to another anti-Mackay
configuration.

We performed a similar analysis for all cluster sizes up to
n=45 (where LJ,s is the largest cluster, for which an anti-
Mackay structure exists). The results are summarized in Fig.
6 which shows the ranges of stability of the Mackay and
anti-Mackay structures, with the LJ;5 being a special case.

In conclusion, systematic analysis of size-induced (7T=0)
or temperature-induced (n=const) Mackay — anti-Mackay
structural transitions in LJ clusters has been reported previ-
ously. PIMC and VGW studies for particular quantum LJ
clusters have also been reported previously, as well as studies
based on the use of more approximate methods (such as the
HA). The present work performs a systematic analysis of the
ground-state structures as a function of both size n and the de
Boer quantum delocalization length A. Our results are con-
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sistent with the commonly exploited idea that the quantum
effects alone can induce structural transformations.

Although we believe that our results are reliable, at least
for the weakly quantum regime (say, A <0.1), for large val-
ues of A we cannot be so sure, as in strongly quantum sys-
tems the wave functions are strongly delocalized, making the
Gaussian approximation inadequate. Unfortunately, there is
no simple way to either systematically improve the VGW
approximation or assess its reliability, beyond the docu-
mented (favorable) comparisons with the PIMC results for
some neon clusters [7,8]. Future calculations using PIMC-
based methods may clarify this issue, although a blind search
for the ground state using such methods may be too expen-
sive. However, as demonstrated in Ref. [8], combining PIMC
with the VGW can make it practical.
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sions. Support from NSF Grant No. CHE-0414110 is ac-
knowledged.
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